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scattering problems by Pocock and Walker [M.D. Pocock, S.P. Walker, The complex Bi-con-
jugate Gradient solver applied to large electromagnetic scattering problems, computational
costs, and cost scalings, IEEE Trans. Antennas Propagat. 45 (1997) 140-146], three Lanczos-
type variants of the recent Conjugate A-Orthogonal Conjugate Residual (COCR) method of
Sogabe and Zhang [T. Sogabe, S.-L. Zhang, A COCR method for solving complex symmetric

g/;SF('—{O linear systems, J. Comput. Appl. Math. 199 (2007) 297-303] are explored for the solution of

complex nonsymmetric linear systems. The first two can be respectively considered as
Keywords: mathematically equivalent but numerically improved popularizing versions of the BiCR
Physical problems and CRS methods for complex systems presented in Sogabe’s Ph.D. Dissertation. And the
CBiCG last one is somewhat new and is a stabilized and more smoothly converging variant of
COCR the first two in some circumstances. The presented algorithms are with the hope of obtain-
Complex nonsymmetric matrices ing smoother and, hopefully, faster convergence behavior in comparison with the CBiCG

Lanczos-type variants method as well as its two corresponding variants. This motivation is demonstrated by

numerical experiments performed on some selective matrices borrowed from The Univer-
sity of Florida Sparse Matrix Collection by Davis.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

With respect to “the greatest influence on the development and practice of science and engineering in the 20th century”
as written by Dongarra and Sullivan [3], Krylov subspace methods are considered as one of the “Top Ten Algorithms of the
Century”. Preconditioned Krylov subsace methods are one of the most widespread and extensively accepted techniques for
numerical solution of today’s large-scale linear systems of the form Ax = b. Most of those linear systems arise from various
fields of computational science and engineering. Such examples are electromagnetic applications in particular by discretiza-
tions of, for instance, Helmholtz equations and Maxwell equations. Successive attempts and efforts have been made in the
last half century for generalizations of the well-known Conjugate Gradient (CG) method by Hestenes and Stiefel [4] and the
breakthrough Lanczos algorithm by Lanczos [5] for symmetric linear systems, leading to many advances in the development
of Krylov subspace methods. The monograph by Brezinski [6] gives an elegant coverage of the intimate relations between
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approximation theory and the Lanczos-type algorithms. A recent excellent and thorough review article by Simoncini and
Szyld [7] has investigated the new developments of Krylov subspace methods for the iterative solution of linear systems dur-
ing the last decade and a half in detail.

One such attractive extension due to Fletcher is what is called the Biconjugate Gradient (BiCG) method [8], which is often
used to deal with the nonsymmetric and nonpositive-definite matrices as arising in scattering problems without the penalty
of worsened condition number. Jacobs [9,10] extended the BiCG method to complex systems (referred to as the CBiCG meth-
od) with certain complex conjugate modifications; see also a similar approach by Sarkar [11] and an analysis of the func-
tional associated with the CG method in complex arithmetic by Markham [12]. Smith et al. [13] applied the CBiCG
method to small two-dimensional electromagnetic scattering problems to find it, in general, to be more efficient with respect
to convergence behavior compared with the CG method. Later, Pocock and Walker [1] successfully extended the use of the
CBiCG method to an isoparametric boundary integral equation formulation for three-dimensional frequency-domain
electromagnetic scattering problems. These problems are especially on large and geometrically complex examples, including
a 20 wavelength slender dipole, the NASA almond, and a resonant cavity. By the way, Joly and Meurant [14] derived several
complex conjugate gradient-like methods from a unified framework to generalize the real case addressed in a Joly’s previous
paper [15] for solving complex non-Hermitian linear systems. They introduced a variant of the BiCG method different from
Jacobs’ method (CBiCG). Furthermore, a Biconjugate Gradient Squared (BiCGS) method was derived the same way that the
ingenious Conjugate Gradients Squared (CGS) method was developed by Sonneveld [16]. In addition, for the important case
where the coefficient matrix is complex symmetric, Clemens and Weiland [17] showed there exists a whole theoretically
interesting class of SCBICG(I',n) methods. It characterizes each variant of a complex symmetric BiCG method by a set of
real-valued coefficients I" for a polynomial 7 of degree n which defines the initial pseudo-residual 7, as presented therein.
Practically it provides two efficient methods: one is the Conjugate Orthogonal Conjugate Gradient (COCG) method due to van
der Vorst and Melissen [18], also appearing in [19,20], and the other BICGCR method by Clemens and Weiland [21]. As no-
ticed in [18], the COCG method often behaves like the CBiCG method, in terms of number of iterations, but with half the
computational cost; refer also to [7]. Li et al. [22] capitalized upon incomplete Cholesky factorization preconditioning tech-
niques combined with the COCG method to solve three-dimensional electromagnetic scattering problems. Clemens and
Weiland [21] applied the BiCGCR method with preconditioning techniques for the solution of large sparse complex symmet-
ric systems of linear equations arising from electromagnetic high-voltage problems.

For quite some time, there has been a growing interest in smoothing processes which are known to provide a transition
from the results of the first method of a pair of orthogonal and minimal residual methods (or, biorthogonal and quasi-
minimal residual methods) to those of the second one. It is with the hope that the residual norm plot becomes smoother
and, hopefully, faster decreasing since far outlying iterates and residuals are avoided in the smoothed sequences. Weiss
emphasized in his work [23-25] the relationship between certain pairs of orthogonal and minimal residual methods, where
the results of the second method can be generated from those of the first method by applying the minimal residual smooth-
ing process. Examples of such pairs are the CG and CR methods, the FOM and GMRES methods, as well as the CGNE and CGNR
versions of applying the CG method to the normal equations. For more details of these above pairs, refer to [26]. A somewhat
less general, but more specific framework from a different perspective was considered by Gutknecht and RozloZnik [27]. By
the way, several practitioners discussed a class of techniques known as residual smoothing; see, e.g., [28-32]. A remarkable
result shown by Zhou and Walker [31] is that the iterates of the Quasi-Minimal Residual (QMR) method [33] can be obtained
from those of the BiCG method as a particular case of residual smoothing. Gutknecht and RozloZnik [34] presented a roundoff
error analysis of smoothing algorithms to show that the ultimately attainable accuracy of the smoothed iterates, measured in
the norm of the corresponding residuals, is, in general, not higher than that of the primary iterates. Around the same time,
they [35] deepened the understanding of some of the known relationships in [24,25,31,36-43] between pairs of orthogonal
and minimal residual methods (or, biorthogonal and quasi-minimal residual methods) by a significant interpretation of
smoothing processes in coordinate space. They also introduced in the same paper a unifying framework for minimal residual
and quasi-minimal residual smoothing in order to estimate how much smaller the residuals or quasi-residuals of the
minimizing methods can be compared to those of the corresponding Galerkin or Petrov-Galerkin methods. As addressed
extensively by Gutknecht and RozloZnik [34], although the smoothed residuals do not converge considerably faster than those
of the primary method in exact arithmetic, there is a useful consequence of the fact that the ultimate accuracy of the smoothed
residuals is on the same level as that of the primary iterates. Thus, smoothing processes can be applied to produce certain
smoothed residuals, most notably those of the minimum residual method. Those produced smoothed residuals are ultimately
more accurate than those obtained by other, mathematically equivalent algorithms frequently used in practice; see also [ 7] for
review on more QMR-type smoothing procedures and discussions of their sound residual smoothing effects.

Recently, Sogabe and Zhang [2] extended Stiefel’s Conjugate Residual (CR) method [44] to the Conjugate A-Orthogonal
Conjugate Residual (COCR) method for solving complex symmetric linear systems from the observation of derivations of
the CG, CR, and COCG methods. The COCR method is numerically demonstrated to tend to give smoother convergence behav-
ior than the COCG method. And it sometimes converges faster than the QMR method in terms of the number of iterations.
Based on one of the simplest derivations of the BiCG method given by van der Vorst [45], the newly published BiCR method
by Sogabe et al. [46] also possesses smoother convergence behavior compared to the BiCG method for real nonsymmetric
linear systems. Moreover, the BiCR method often converges faster than the BiCG method learned from the involved numer-
ical experiments. For the detailed and other derivations of the COCG and BiCR methods, one may consult Sogabe’s Ph.D. Dis-
sertation [47]. In order to improve the performance of the BiCR method, a general framework of the product-type methods
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was also given in [47] on the basis of the BiCR method. They include the CRS, BICRSTAB, BiCRSTAB2, GPBiCR methods, among
which only the CRS method was precisely described. Also presented in Sogabe’s Ph.D. Dissertation was a stabilized CGS
(SCGS) method developed to improve the convergence behavior of the CGS method. Except for the COCR method tested
on complex symmetric linear systems mentioned above, all the other numerical experiments performed in [47] were focused
on real nonsymmetric linear systems. But extensive numerical experiments for complex nonsymmetric linear systems were
not made.

Inspired by the elegant achievement thanks to Pocock and Walker [1] mentioned before, the main attention of the present
paper is to explore three Lanczos-type variants of the COCR method for the solution of complex nonsymmetric linear sys-
tems. The first two can be considered as mathematically equivalent but numerically improved popularizing versions of
the BiCR and CRS methods for complex systems, respectively. And the last one is somewhat new and is a stabilized and more
smoothly converging variant of the first two in some circumstances. The presented algorithms are with the motivation of
obtaining smoother and, hopefully, faster convergence behavior in comparison with the CBiCG method as well as its two
evolving variants—the CGS method and one of the most popular methods in use today—the Biconjugate Gradient Stabilized
(BiCGSTAB) method by van der Vorst [48], when dealing with large complex nonsymmetric linear systems. Coefficient matri-
ces of the complex nonsymmetric linear systems in our numerical experiments come from four typical and representative
physical problems, including an electromagnetics problem (Dehghani/light_in_tissue), a 2D/3D problem (Kim/kim1), an
acoustics problem (HB/younglc) and a thermal problem (Bindel/ted_AB_unscaled).

Bearing in mind the essential biorthogonality conditions expressed as (3.25) in [47], we reformulate the BiCR and CRS
methods to obtain the first two variants with generalized constraints subspaces. Particularly, a specific initial shadow resid-
ual different from the one for the BiCR and CRS methods is selected in the implementation of our methods. The first two
presented methods respectively follow similar ways for the derivations of Algorithm 6.17 (Conjugate Gradient) [26] and
the CGS method. The expected convergence behaviors of the first two methods are smoother than (at least the same as) those
of the BiCR and CRS methods, respectively. Because our first main method developed is strongly related to, as well as defined
by, the choice of a general constraints subspace. And the standing point for the choice of the constraints subspace is revealed
and suggested by a Biconjugate A-Orthonormalizaion Procedure described in the next section. This is a precise and explicit
version of Algorithm 3.6: A-biorthogonalization process in [47]. Therefore, we name our first method the Biconjugate
A-Orthogonal Residual (BiCOR) method. Accordingly, the latter two methods are called the Conjugate A-Orthogonal Residual
Squared (CORS) method and the Biconjugate A-Orthogonal Residual Stabilized (BiCORSTAB) method, respectively.

The remainder of the paper is organized as follows. In Section 2, a version of the Biconjugate A-Orthonormalizaion Pro-
cedure is described first. And then a detailed discussion on the biconjugacy between the associated vectors for the primary
and dual systems is given to provide a suggestion of alternative choices for constraints subspaces in the construction of
Krylov subspace methods. The broadened constraints subspaces of the one for the BiCR method help to design the BiCOR
method in Section 3. For the sake of effectiveness and efficiency enhancement of the BiCOR method, two variants of the
BiCOR method—the CORS and BiCORSTAB methods are successively developed in Section 4. In Section 5, numerical exper-
iments are made and a complete analysis is given to illustrate the superiority of our proposed methods to their counterparts
related to the CBiCG and BiCR methods. Finally, concluding remarks are given in Section 6.

When it will be helpful, we will use the word “ideally” (or “mathematically”) to refer to a result that could hold in exact
arithmetic ignoring effects of rounding errors, and “numerically” (or “computationally”) to a result of a finite precision
computation.

2. A version of Biconjugate A-Orthonormalizaion Procedure

Sogabe introduced an A-biorthogonalization process in [47] for the sake of another derivation of the BiCR method. In this
section, for the purpose of giving some relevant background of the BiCOR method in Section 3, a precise and explicit version
of the A-biorthogonalization process is described as the Biconjugate A-Orthonormalizaion Procedure.

To characterize the procedure, the following notation is introduced first.

Denote the overbar (“-") the conjugate complex of a scalar, vector or matrix and the superscript “T” the transpose of a
vector or matrix. For a complex nonsymmetric matrix A = (a;),,, € C"*", the Hermitian conjugate of A is denoted as

A = AT = (@)

nxn

nxn-*

The standard Hermitian inner product of two complex vectors u, v € C" is defined as
n
vy =ulpy = Zﬂﬂ/i.
i=1

The nested Krylov subspace of dimension m generated by A from v is of the form
Km(A, v) = span{v,Av,A’v,... A" v}.

In addition, e; denotes the ith column of the appropriate identity matrix.
Instead of pairs of biorthogonal bases formed by the Lanczos Biorthogonalization Prodedure [26,49], the Biconjugate
A-Orthonormalization Procedure is exploited here to ideally build up a pair of biconjugate A-orthonormal bases for the dual
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Krylov subspaces K (A, v1) and K (A", wy), where »; and w; are chosen initially to satisfy certain conditions. A framework
that achieves the above purpose is depicted as follows:

Algorithm 1: A version of Biconjugate A-Orthonormalization Procedure

1. Choose v1,wy, such that (w,Avq) = 1.
2. Setﬁ]:(3]EO,W0:U()EUGCn
3. Forj=1,2,...,m Do:
4. % = (W, A(Az)))
5. 1A/j+] = AUj — v — [jjyj—l
6. ijr] = AHWj - 5(jo - (5jo,1
7. ‘;j+1 = |<AVAVj+1AvA7A/j+1>|7
S
. 1/j+] = 6,7
10 Wit ‘;;:fj:
11 EndDo

Observe that the above algorithm is possible to break down whenever §;,; vanishes while w;,; and A2;,; are not equal to
0 € C" appearing in line 7. In the interest of counteraction against such breakdowns, refer oneself to remedies such as so-
called look-ahead strategies [50-53] which can enhance stability while increasing cost modestly or others, for example
[54]. But that is outside the scope of this paper and we shall not pursue that here. For more details, please refer to [26]
and the references therein. Throughout the rest of the present paper, suppose there is no breakdown encountered during
algorithm implementations because most of our considerations concern the exploration of the three Lanczos-type variants
of the COCR method for solving complex nonsymmetric linear systems.

Now the following proposition states some properties of the vectors produced by Algorithm 1, which are analogous to the
properties of the A-biorthogonalization process in [47].

Proposition 1. If Algorithm 1 proceeds m steps, then the right and left Lanczos-type vectors vj, j=1,2,...,m and
w;, i=1,2,...,m, form a biconjugate A-orthonormal system in exact arithmetic, i.e.,

(Wi,AZ)j> = 51J, 1< l,] <m.

Furthermore, denote by V\, = [v1, V2, ..., vp] and Wy, = [wy,Ws, ..., wy] the n x m matrices and by T, the extended tridiagonal
matrix of the form
[T
Tm = < " T |
— L[ Oms1€p
where
[0 By
Gy o P
Tm = ' ’ )
5m—1 Am-1 ﬁm
L 5m Olm
whose entries are the coefficients generated during the algorithm implementation, and in which a4, ...,0n, B,..., B, are complex
while §,, ...,y positive. Then with the Biconjugate A-Orthonormalization Procedure, the following four relations hold:
Avm = Vme + 5m+1 Umi1 9;7 (])
AHWm = WmTIr-,II + Bm+1wm+1ezn7 (2)
WHAV,, = I, 3)
WHAV,, = T 4)

Proof. The biconjugate A-orthonormalization of the right and left Lanczos-type vectors »;, w; (i,j = 1,2,...,m) can be shown
analogously to the first biorthogonality property of Theorem 3.3.1 in [47] combined with the observation from lines 8-10 in
Algorithm 1.

Relations (1) and (2) are matrix reformulations of the following equalities which are readily derived from lines 5-10 in
Algorithm 1

AT/jZ[)’jT/j,]+06j1/j+(5j+1l/j+1, j:1,2,,..,m,
H — r .
A Wj = W1 + 0iW; + iraWji1, ji=12,....m
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See also the alike relations expressed as (3.65) in [47].

Relation (3) is directly given by the first part of this proposition, i.e., the biconjugate A-orthonormality between the pairs
of right and left Lanczos-type vectors. Relation (4) follows by multiplying both sides of (1) by WﬁA and making use of (3) and
the associated biconjugate A-orthonormality between Wy, and vp,,,;. O

Given an initial guess xo to the complex nonsymmetric linear systems Ax = b, and the associated initial residual
ro = b — Axp, we can construct a two-sided algorithm by virtue of Algorithm 1 based on the properties presented in Propo-
sition 1. Consider an oblique projection method onto K, (A, v1) and orthogonally to L,, = A'K o (A”, wy), where v; = Hrgiouz and
w; is chosen arbitrarily such that (w;,Av) # 0. But w; is often chosen to be equal to H:’Zl‘% subjecting to (wy,Av;) = 1. It is
worthy noting that this choice for w; plays a significant role in establishing the respective superiority of the BiCOR and CORS
methods to the BiCR and CRS methods, as will be seen in the numerical experiments. Thus running Algorithm 1 m steps, we
can seek an mth approximate solution x, from the affine subspace xo + Kn,(A, 1) of dimension m, by imposing the
Petrov-Galerkin condition

b—Ax, L Ly,
which can be mathematically written in matrix formulation as
H
(A"Wn )" (b — Axn) = 0, (5)

where W,, is defined in Proposition 1.
Since the approximate solution can be represented as

Xm = Xo + VY, (6)
where V,, is defined in Proposition 1 and y,, € C" contains the coefficients of the linear combination. By simple substitution
and computation with (4)-(6), a tridiagonal system for solving y,, is resulted as

Tm.Ym = fey, (7)

where Ty, is formed in Proposition 1, and § = ||ro||.
Consequently, a method for complex nonsymmetric systems making use of Algorithm 1 is briefly given below:

Algorithm 2: Two-sided Biconjugate A-Orthonormalization method

1. Compute ry = b — Axo for some initial guess x, and set f = ||ro||,-
2. Start with v; = %0 and choose wy such that (w;,Av;) = 1, (for example, w; = “}"“;’1“2).
1112
3. Generate the Lanczos-type vectors v1, v, ..., Un and wy, Wa, ..., Wy as well as the tridiagonal matrix T, by running

Algorithm 1 m steps.
4.  Compute y,, = T, (fe1) and Xy = Xo + Vin¥im.

Analogously, we can derive the counterpart of Algorithm 2 for the solution of the corresponding dual system A"x* = b",
where the dual approximation x;, is sought from the affine subspace x; + K,,(A", w;) of dimension m by satisfying

b — Ax: L AKn(A, v1).

Denotery = b" — A"x; and §* = ||rj|l,. If wy = ;% and v is chosen properly such that (v;,Aw;) = 1, then the counterparts of
(5)-(7) are the following:

(AVm)"(b" — Ax;,) =0, (8)
Xp = Xo+ Wayr, 9)

where V,,, W, and T, are defined in Proposition 1 and y;, € C" is the coefficient vector of the dual linear combination.
Assume the LU decomposition of the tridiagonal matrix T,, is

T =LnUn,
substituting which into (6), (7) and (9), (10) gives respectively
Xm = X0 + Vin(LUn) " (Be1) = Xo + ViU, L, (Be1) = Xo + Pz,
X =X+ Win(Unlp) ™ (B€1) = X5 + Wan(Lp) ™ (Up) ' (B'e1) = % + Pz,

where P, = V,,U,! zo = L} (fer), and P, = Wi, (L)™' z, = (U (prey).
By observation as does in the derivation of DIOM from IOM Algorithm in [26, Chapter 6], the approximation x, and the
dual approximation x;, can be updated, respectively, from x,,_; and x;, ; at each step as

Xm = Xm-1 + Cum-,
X = X1 + (P
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where ,, and {;, are coefficients, p,, and p;, are the corresponding mth column vectors in P,, and P;, defined above, termed as
the mth primary and dual direction vectors, respectively.

Then analogous to the second biorthogonality property of Theorem 3.3.1 in [47], the pairs of the primary and dual direc-
tion vectors form a biconjugate A?-orthonormal set, i.e., <p;,A2pj> = 8ij (1 <1i,j < m), which follows clearly from

(P APy = (Wi (L) DA VLU, = L WEAV, U, = L) ToU, = L' LaUnU,, = I,

with (4), different from the proof for the second biorthogonality property of Theorem 3.3.1 in [47].
In addition, the mth primary residual vector r,, = b — Ax,;, and the mth dual residual vector r}, = b* — Ax;, can be repre-
sented as

'm = *(5m+1errnym Umi1, (11)
I = _Bmﬂe;y:nwmh (12)

by simple computation with (1), (2), (6), (7), (9) and (10).

Eqgs. (11) and (12) together with (3) reveal that the primary and dual residual vectors satisfy the biconjugate A-orthogonal
conditions, i.e., (r;,Ar;) = 0, for i # j, which is exactly the first biorthogonality property of Theorem 3.3.1 in [47].

Now turn back to the oblique projection method mentioned before. It is known that the constraints subspace in an ob-
lique projection method is different from the search subspace and may be totally unrelated to it. This distinction is rather
important and gives rise to different types of algorithms [26]. The biconjugate A-orthogonality between the primary and dual
residual vectors and the biconjugate A*-orthonormality between the primary and dual direction vectors reveal and suggest
alternative choices for the constraints subspace. This idea helps to devise the BiCOR method in the coming section.

3. A derivation of BiCOR

Given an initial guess x, to the considered linear system Ax = b, as discussed by Sogabe and Zhang [2] and Sogabe [47],
many methods such as the CG, CR, COCG, BiCGCR, COCR and BiCR methods can be unified into the following coupled two-
term recurrences by imposing certain conditions:

ro=b—Axo, p,=ro, (13)
Xjs1 = Xj + 04Dj, (14)
T = Tj — %Ap;, (15)
Pjs1 =T+ pp; forj=0,1,..., (16)

where r; = b — Ax; is the jth residual vector and p; is the jth search direction vector. Various computational formulas of the
involved parameters o, ; (j = 0,1,...) in the recurrences (15) and (16) may lead to different algorithms. Denoting W the
underlying constraints subspace, these parameters can be determined by the following orthogonality conditions:

riyp LW and Ap;, LW. (17)

Specifically, W is chosen to be K (A, o) and AKw(A, o) to respectively generate the CG method [4] and the CR method [44]
when A is Hermitian positive definite. When A is complex symmetric, W = K;y(A,To) and W = Kn(A, ATo), respectively, lead to
the COCG method [18] and the BiCGCR method [21], while W = AK,(A,To) leading to the COCR method [2]. For a complex
nonsymmetric A, W = K,, (A", ;) leads to the CBiCG method satisfying (r;, o) » 0[9,10] and W = A"K,,, (AH, r};) results in the
BiCR method with r}; chosen to be, for example, r, for its implementation [46,47]. It should be stressed that there were not
extensive numerical experiments with complex nonsymmetric linear systems tested for the BiCR method in [46,47].

For concerned complex nonsymmetric linear system

Ax =D, (18)

similar to [17], an expanded choice as suggested in Section 2, is W = A"K,, (A”, r(*)), where 1} is chosen to be equal to P(A)r,

with P(t) an arbitrary polynomial of certain degree with respect to the variable t and p; = rj. It should be noted that the opti-
mal choice for the involved polynomial is in general not easily obtainable and requires some expertise and artifice. This as-
pect needs further research. When there is no ambiguity or other clarification, a specific default choice for W with r§ = Ary is
adopted in the numerical experiments in comparison with Sogabe’s choice for W with r§ = r in his implementation [46,47].
It is important to note that the scalars o;, §; (j = 0,1,...) in the recurrences (14)-(16) are different from those produced by
Algorithm 1. The search direction vectors p;’s here are multiples of the primary direction vectors p;’s defined in Section 2.
Analogous to (3.33) and (3.34) in [47], the coupled two-term recurrences for the (j + 1)th shadow residual vector r},, and
the associated (j+ 1)th shadow search direction vector p;,, can be augmented by similar relations to (15) and (16) as
follows:

g =17 — A" D, (19)

Pja=Tiq+pp; forj=01,..., (20)
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where &; and f; are the conjugate complex of o; and g; in (15) and (16), correspondingly. Then with a certain polynomial P(t)
with respect to t, (17) explicitly reads

ria LAYK, (A”, rg) and Ap;,, L A"K, (A”, rg) with 15 = P(A)ro, 1)
which can be reinterpreted from a practical point of view as

e the residual vectors r’s and the shadow residual vectors r;’s are biconjugate A-orthogonal to each other, i.e,
(7, Ar)) = (A"r: ;) = 0, for i # j;

e The search direction vectors p;'s and the shadow search direction vectors p;’s form an A?-biconjugate set, i.e.,
(0}, A’pi) = (A"p; Ap;) = (A")’p;,pi) = O, for i # J;

which are the facts already stated in the latter part of Section 2.

Therefore, we possess the conditions to follow a similar way how Algorithm 6.17 (Conjugate Gradient) [26] was derived
to determine the scalars o; and f; by imposing the corresponding biorthogonality and biconjugacy conditions (21) into (15),
(16), (19) and (20). The idea of the derivation of the BiCOR method is essentially the same as one of the BiCR’s derivations
[47]. But they are different in both the deriving ways and the initial shadow residuals. We use extensively the algorithmic
schemes introduced in [55] for descriptions of the present algorithms.

Making the inner product of AHrf and rj,; as defined by (15) yields

<AHrj, rj+1> = <A”r}, r— ochpj> =0,

with the biconjugate A-orthogonality between rj,; and r;, further resulting in

<A”r;, rj>

<AH r}’f,Apj> 7

where the denominator of the above right-hand side can be further modified with (20) as
H. Ho« 7 aHo. H.
(A1, Ap;) = (A"p; = By 1A"py ., Ap)) = ("D Ap)),
because p; , and p; are A?-biconjugate. Then
(') (r.an)
= AT (22)
<A p,-,Apj> <A pj,Apj>
Similarly, writing that p; ; as defined by (16) is A?*-biconjugate to p; yields
(P D1 ) = (A'D} ADyr ) = (AP} Arja + BiAP;) = O,

giving

P <AHPf~,A"j+1> - <AHPf7ATj+1>

<AHp;‘,Apj> ! <r}.*,Arj>

with o computed in (22).
Observe from (19) that

SAH .. .
—%ATD] =Tj T

and therefore,

= <—5£jAHpj*,ATj+1> _ <rf+1 - rvarj+1> _ <rj*+17Arj+1> (23)

<r}‘,Arj> <rj*,Arj> <rj,Arj> ’

because of the biconjugate A-orthogonality of r; and ;1. Putting these relations (13)-(16), (19), (20), (22) and (23) together
and taking the strategy of reducing the number of matrix-vector multiplications by introducing an auxiliary vector recur-
rence and changing variables adopted for the BiCR method in [47], together lead to the BiCOR method. It is a mathematically
equivalent but numerically improved generalized version of the BiCR method [46,47]. The pseudocode for the left precon-
ditioned BiCOR method with a preconditioner M is given in the following.
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Algorithm 3: Left preconditioned BiCOR method

1. Compute rg = b — Axo for some initial guess xq.
Choose ry = P(A)rg such that (rj,Arg) # 0, where P(t) is a polynomial in t.
(For example, ry = Arg).

2 forj=1,2,...

3 solve Mz;_; =r1j_4

4. ifj=1

5. solve M'z; = r;;

6 endif

7 Z= AZJ‘,]

8. pi1 =12 1,2)

9. if p; ; = 0, method fails
10. ifj=1

11. Do =20

12. Py =2

13. Qo =2

14. else

15. Bi—2 = Pj-1/Pj-2

16. Pj1=2Zi1+Pjabj2
17. Pl =24 +Bji2p,
18. gio1 =2+ fj2Gj2
19. endif

20. qa_, =Ap:

21. solve M"u | =q: ,

22. o1 = Pj_1/{Uj_1,q-1)
23. Xj = Xj_1+ 0j_1Dj1
24. Tj=Tj_1 — %_1Gj_1
25. Zi =27 | — O Uy
26. check convergence; continue if necessary
27. end

In Algorithm 3, one can obtain the unpreconditioned BiCOR method with the preconditioner M taken as the identity ma-
trix. Since the BiCOR method is eventually mathematically equivalent to the BiCR method except for a different initial sha-
dow residual, the computational cost for the BICOR method is approximately the same as that for the BiCR method. For
details on the computational cost for the BiCR method as well as its comparison with the BiCG method, see [47]. It should
be emphasized that the shadow residual vectors r;’s for both the BiCOR method and the BiCR method are updated in the
same form and are only different in their initializations. We will see later in the numerical experiments that the differences
in terms of the initial shadow residuals between the two methods can only lead to slightly different smooth convergence
behaviors. In general, the BiCOR method practically behaves only a little more smoothly than the BiCR method. But the supe-
riority of the BiCOR method to the BiCR method with respect to smooth convergence behavior can result in dramatically dif-
ferent smooth convergence behaviors in their corresponding variants (see, e.g., Example 1 in Section 5).

4. Two variants of BiCOR

Exploiting the ingenious ideas behind the CGS method [16] and the BiCGSTAB method [48], in this section, we develop
two variants of the BiCOR method—the CORS method and the BiCORSTAB method successively. They are with the hope of
increasing the effectiveness of the BiCOR method in certain circumstances. Essentially, the idea of the variants of the BiCOR
method is the same as that of the BiCR variants—the CRS and BiCRSTAB methods as listed in Table 5.1 of [47]. Here, the CORS
method can be regarded as a mathematically equivalent but numerically improved popularizing version of the CRS method
for complex systems. And the BiCORSTAB is somewhat new and is described as a whole and precise algorithm while there
was no whole and precise algorithm of the BiCRSTAB method given in [47].

First, the CORS method follows exactly a similar way in [16] for the derivation of the CGS method while taking the strat-
egy of reducing the number of matrix-vector multiplications by introducing auxiliary vector recurrences and changing vari-
ables adopted for the CRS method in [47].

In Algorithm 3, by simple induction, the polynomial representations of the vectors r;, 17, p;, p; at step j can be expressed as
follows:

1j = ¢j(A)ro, p; = Ti(A)ro,
= b, B = A,
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where ¢; and 7; are Lanczos-type polynomials of degree less than or equal to j satisfying ¢;(0) = 1.
Substituting these corresponding polynomial representations into (22) and (23) gives

L <r;7Arj> - <¢j(AH)r3,A¢j(A)rO> B <r3,A¢>j2(A)r0>
(A Ap) (AT A AT (Ar0)  (r, AT (Ao )
_ <rf+1’Ari+1> _ <‘/’j+1 (A")r5,Ady (A)r0> <T6,A¢j2+] (A)r0>

i = <rj*7Arj> - <¢1(AH)r67A¢j(A)rO> - <r6:A¢j2(A)r0> .

Also, note from (15) and (16) that ¢; and 7; can be expressed by the following recurrences:

¢j1(t) = ¢(t) — oyt (L),
T (8) = ¢y (8) + B (8).

By some algebraic computation with the help of the induction relations between ¢; and 7; and the strategy of reducing oper-
ations mentioned above, the desired CORS method can be obtained. The pseudocode for the resulting left preconditioned
CORS method with a preconditioner M can be represented by the following scheme.

Algorithm 4: Left preconditioned CORS method

1. Compute rg = b — Axp for some initial guess xg.
Choose ry = P(A)rg such that (rj,Arg) # 0, where P(t) is a polynomial in t.
(For example, ryy = Ar).

2 forj=1,2,...

3 solve Mz;_; =14

4. r= AZj,l

5. pj—l = <r67f>

6. if p; ; = 0, method fails

7 ifj=1

8. € =To

9. solve Mzey = eg

10. do =1

11. Qo ="

12. else

13. Bi-2=Pj1/Pj2

14. € 1="1j1+ ﬁj,zhj,Q
15. 281 =21+ [fj,zlhj,z
16. dj,1 =7+ ﬁj,zf};z

17. gj-1 = dj—1 + Pia(fia + Bj—2qj-2)
18. endif

19. solve Mq = q;_,

20. q=Aq

21. %1 = pj_1 /{5, @)

22. hj,] =€_1— 0(_,',1qu1

23. zhj_ =zej_1 — %_1q

24. fj—l = dj—l — OCj,]CAI

25. Xj = X1+ %_1(2zej_1 — %_1q)
26. Tj=Tj_1— % (Zdj,] — i1 q)
27. check convergence; continue if necessary
28. end

One iteration step of the CORS method involves about as many arithmetical operations as one step of the CRS method
listed in Table 5.2 in [47]. Although the two methods are mathematically equivalent, the CORS method can lead to consid-
erably smoother convergence behavior than the CRS method, as well as the CGS and SCGS methods, as illustrated by some
figures reflecting the convergence behavior (see, e.g., Example 1 in Section 5). The main reason why the CORS method is
sometimes much superior to the CRS method could come from the different choices of the initial shadow residuals, which
work through the whole process at each iteration step; see [48] for a related discussion. In such cases, the CORS method gains
a lot and sometimes may be amazingly competitive with the BICGSTAB method (see, e.g., the same example above). How-
ever, the CORS method, like the CGS, SCGS, and CRS methods, is based on squaring the residual polynomial. In cases of irreg-
ular convergence, this may lead to substantial build-up of rounding errors and worse approximate solutions, or possibly even
overflow (see, e.g., Example 3 in Section 5). For discussions on this effect and its consequences, see [7,26,48,55,56].
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In order to remedy this difficulty and cure some of the numerical problems that plague the CORS method, to some extent,
a more smoothly converging variant of the BICOR method—the BiCORSTAB method is developed, without giving up the
attractive speed of convergence of the CORS method (see, e.g., Example 2 in Section 5). The BICORSTAB method is a polyno-
mial product variant of the BiCOR method, which is adapted easily from the BiCGSTAB method [26,48,55] by a careful com-
parison and investigation. Still making use of the strategy of reducing operations utilized for the previous two methods, the
pseudocode for the left preconditioned BiCORSTAB algorithm is shown below.

Algorithm 5: Left preconditioned BICORSTAB method

1. Compute rg = b — Axy for some initial guess xq.
Choose r§ = P(A)rg such that (rj,Arg) # 0, where P(t) is a polynomial in t.
(For example, r§ = Arp).

2 forj=1,2,...

3 F= Arj,l

4. Pj1 = <I‘67f‘>

5. if p; ; = 0, method fails

6 ifj=1

7 Do =To

8. qo = f‘

9. else

10. Bi2 = (Pj_1/Pj_2) X (%_2/j_3)
11. P =Tj1+ Bj2(Pj2 — Wj-2G;_2)
12. Gjio1 =T+ Bi_2(gj2 — Wj 2§ 2)
13. endif

14. solve Mp =p; 4

15. gji-1 = Aqj_4

16. %1 = pi1/{r6, Gj-1)

17. S=Tj1— % qj—l

18. check norm of s; if small enough: set x; = x;_; + @;_1p and stop
19. solve Ms =s

20. t=7-— O‘j—lqj—l

21. wj_1 = (t,s)/(t, )

22. Xj=Xj1+ 0(1;1]5 + Cl)j,].g'

23. Ij=S—mjqt

24. check convergence; continue if necessary for continuation it is necessary that w;_; # 0
25. end

Note that line 18 in the above algorithm will generate “half” iterate each step during the algorithm implementation. So
does the BiCGSTAB method; refer to [48,55]. In each iteration, the BICORSTAB method requires two more additional opera-
tions for vector updates than the BiCGSTAB method. Compared to the BiCGSTAB method, the convergence behaviour of the
BiCORSTAB method in certain cases is much smoother so that it sometimes produces much more accurate residual vectors
(and, hence, better approximate solutions). And it even converges considerably faster than the BiCGSTAB method (see, e.g.,
Example 2 in Section 5). However, although sometimes the BiCORSTAB method converges a little more smoothly than the
BiCGSTAB method, it does not improve the iteration process with respect to efficiency (see, e.g., Examples 1 and 3 in
Section 5). In such cases, one may attempt to select other values for the pivotal parameters w;_; in line 21 of the above algo-
rithm, such like what have been done for the BiCGSTAB2 method by Gutknecht [57] and the BiCGSTAB(I) method by Sleijpen
and Fokkema [58] to improve the performance of the BiCORSTAB method. This aspect demands further research. By the way,
one can also choose other polynomials to construct the initial shadow residuals in the first line of Algorithm 5 for improve-
ment. By trial and error, the BiICORSTAB method for Example 1 in Section 5 is tested with several different inital shadow resid-
uals to investigate its different performances. This actually offers a feasible direction to improve the BiCORSTAB method.

5. Examples and numerical experiments

Far from being exhaustive, in this section, the applicability of the three Lanczos-type variants of the COCR method is dem-
onstrated for four different, but representative physical problems. The smoothing convergence effects obtained by the BiCOR
method and its variants are evaluated in comparison with their counterparts related to the CBiCG and BiCR methods. Numer-
ical comparisons are also made between the present methods and other methods, such as the SCGS method developed by
Sogabe in [47], and the GMRES method first proposed by Saad and Schultz [59]. With appropriate preconditioning tech-
niques, all the present methods are very attractive for solving relevant classes of complex nonsymmtric linear systems.
But this is not the point we pursue here. All the experiments are performed without preconditioning techniques. That is,
the preconditioner M in Algorithms 3-5 will be taken as the identity matrix. Refer to the outstanding survey by Benzi



6386 Y.-F. Jing et al./Journal of Computational Physics 228 (2009) 6376-6394

[60] and the distinguished book by Saad [26] on preconditioning techniques for improving the performance and reliability of
Krylov subspace methods.

The four sets of test problems as arising from electromagnetics, discretizations of 2D/3D physical domains, acoustics and
thermodynamics, are described in Table 1. All of them are borrowed in the MATLAB format from the University of Florida Sparse
Matrix Collection provided by Davis [61], in which the meanings of the column headers of Table 1 can be found. The exper-
iments have been carried out with machine precision 107'® in double precision floating point arithmetic in MATLAB 7.0.4
with a PC-Pentium (R) D CPU 3.00 GHz, 1 GB of RAM. We make comparisons in four aspects: number of iterations (referred
to as Iters), CPU consuming time in seconds (referred to as CPU), log,, of the updated and final true relative residual 2-norms
defined respectively as log||1n|l,/|IToll, and logyq||b — Axx|l, /|70, (referred to as Relres and TRR). Numerical results in terms
of Iters, CPU and TRR are reported by means of tables while convergence histories involved are shown in figures with Iters (on
the horizontal axis) versus Relres (on the vertical axis). The stopping criteria used here is that the 2-norm of the residual be
reduced by a factor (referred to as TOL) of the 2-norm of the initial residual, i.e., ||y, /||[To|l, < TOL, or when Iters exceeded the
maximal iteration number (referred to as MAXIT). Here, we take MAXIT = 500. All these tests are started with an initial guess
equal to 0 € C". Whenever the considered problem contains no right-hand side to the original linear system Ax = b, let

Table 1

Structures of the four sets of test problems.

Ex. Group and name id 1 rows # cols Nonzeros Problem kind Sym. (%)
1 Dehghani/light_in_tissue 1873 29,282 29,282 406,084 Electromagnetics 0

2 Kim/kim1 862 38415 38,415 933,195 2D/3D 0

3 HB/younglc 278 841 841 4089 Acoustics 85

4 Bindel/ted_AB_unscaled 1410 10,605 10,605 522,387 Thermal 0
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Fig. 1. Convergence histories of Example 1 with TOL = 107°.
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b = Ae, where e is the n x 1 vector whose elements are all equal to unity, such that x = (1,1,...,1)" is the exact solution. It is
stressed again that when there is no ambiguity or other clarification, the specific default choice for W with rj = Ary is
adopted in the implementation of the proposed three methods in comparison with Sogabe’s choice fgr W with rj =1 in
his implementation [46,47]. This has been already stated in the beginning part of Section 3. A symbol *“ ” is used to indicate
that the method did not meet the required TOL before MAXIT or did not converge at all.

5.1. Example 1: Dehghani/light_in_tissue

The first example is one in which the CBiCG method converges quite smoothly except for two spots, into which two par-
ticular investigations are given in the above right two plots of Fig. 1. It is observed from the top three plots of Fig. 1 that the
BiCR method seems to have about the same “asymptotical” speed of smooth convergence as the CBiCG method (if we discard
the first jumping convergence behavior of the CBiCG method but admit its second one) and that the BiCOR method seems a
little smoother than the other two.

Since all the CGS, SCGS, CRS, and CORS methods are based on doubling the residual polynomial, they inherit cases of irreg-
ular convergence to some extent. Therefore, similar phenomena for the latter four methods with respect to convergence
behavior can be found in the middle left corner of Fig. 1. The phenomena are further examined concretely during two stages,
one of which is in the beginning 50 Iters while the other is after 250 Iters displayed respectively in the middle right two plots
of Fig. 1. Convergence histories after 250 Iters are only compared among the CGS, SCGS and CRS methods in the middle right-
most plot of Fig. 1, because the CORS method converged before 250 Iters shown in Table 2. In terms of Iters and CPU, the first
six methods listed in the same table cost roughly the same while the CORS method requires much less, particularly only
about 70% of the two terms for the BICOR method. This surprisingly smoother and faster convergence behavior of the CORS
method could come from the superior smooth convergence behavior of the BiCOR method to both the CBiCG and BiCR meth-
ods. From the bottom left two plots of Fig. 1, the CORS and BiCORSTAB methods indeed improve the BiCOR method in some
aspects. However, it is observed that in this case the BiCGSTAB and BiCORSTAB methods both give more local peaks in the
convergence curves than the CBiCG and BiCOR methods shown in the bottom center of Fig. 1. It may be taken as a possible
explanation for why the BiCGSTAB and BiCORSTAB methods cost much more CPU than the CBiCG and BiCOR methods as
listed in Table 2. Notably the convergence history of the CORS method, displayed between those of the BiCGSTAB and
BiCORSTAB methods in the bottom rightmost plot of Fig. 1, is considerably smooth. Comparing the efficiency of the CORS and
BiCGSTAB methods, we see in Table 2 that the former method requires about 50% of the latter method in terms of CPU while
only taking about 0.09% more Iters than the latter. Therefore, the CORS method in such cases can even be remarkably com-
petitive with the BiCGSTAB method.

It is found in Table 2 that the BICORSTAB method requires more Iters and CPU than the BiCGSTAB method, although the
two methods have similar convergence behaviors. Notice that the Iters here for the BICGSTAB and BiCORSTAB methods are
not integer. The reason is that line 18 in Algorithm 5 will generate “half” iterate each step during the implementation of the
BiCORSTAB method. So does the BiCGSTAB method; refer to [48,55]. Such phenomena with respect to the “half” iterate in
the other numerical reports for the BiICGSTAB and BiCORSTAB methods can be explained the same way. In order to improve
the BiCORSTAB method, we examined the performance of the BICORSTAB method with different initial shadow residuals by
trial and error. Here, we choose four of them for illustration, respectively with rjy = 1o, 15 = Arg, 15 =10 +Arg, and 1§ = A%r,.
Note that the second choice with rj = Ary is the default for the BICORSTAB method used usually in the paper. In convenience
of comparison, the four cases are named the BiCORSTAB-r, BiCORSTAB-Ar, BiCORSTAB-rAr, BiCORSTAB-A2r, respectively.
Here, the BiCORSTAB-Ar method is exactly the BiCORSTAB used acquiescently. From the top left corner of Fig. 2, among
the compared four cases, we see that the BICORSTAB-r method performs best. Then the BICORSTAB-r method is further taken
separately to compare with the BiCGSTAB method in the last three plots of Fig. 2. More smooth convergence properties of the
BiCORSTAB-r method can be observed in comparison with the BiCGSTAB method, resulting in a slightly faster convergence
rate in terms of CPU but Iters by comparison of the corresponding results in Tables 2 and 3. This suggests a feasible direction
to improve the performance of the BICORSTAB method.

Finally, we state that all the methods used for this example can achieve the specified accuracy in the final results in terms
of TRR as shown in Tables 2 and 3. In addition, the BiCORSTAB-A2r method seems to numerically provide a more accurate

Table 2

Comparison results of Example 1 with TOL = 107°.

Method Iters CPU TRR
CBiCG 330 24.6329 —6.0318
BiCR 314 21.1208 —6.0257
BiCOR 318 21.3432 —6.0150
CGS 331 26.3266 -6.1014
SCGS 299 20.1166 —6.0526
CRS 309 22.9095 —6.0254
CORS 250 15.1079 —6.0645
BiCGSTAB 227.5 28.5066 —6.0295

BiCORSTAB 279.5 30.9885 —6.0611
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Fig. 2. Convergence histories of BiICORSTAB with different ry’s for Example 1.

Table 3

Numerical results of BICORSTAB with different rj in Example 1.

I ro Aro 1o + Arg A%rg
Iters 249.5 279.5 269.5 274.5
CPU 27.9903 30.9885 30.2427 30.8184
TRR —6.1199 —6.0611 —6.0518 —6.4744

final solution than the other involved methods in terms of TRR, which gives a possible way to improve the accuracy of the
final solution.

5.2. Example 2: Kim/kim1

In this situation, the CBiCG method, as observed in the top leftmost plot of Fig. 3, takes on many local peaks in the con-
vergence curve. In such a case, the CGS method would be expected to have some strong effects of irregularities and quite
adverse effects on cancellation. See also the highly erratic effects of the CGS method for the next example (Section 5.3). How-
ever, in this example, although the local effects in the CGS method are much more violent than those of the CBiCG method as
shown in the middle rightmost plot of Fig. 3, these peaks do not seem to delay the convergence of the CGS method. The CGS
method converges faster eventually. Comparing the efficiency of the CBiCG and CGS methods, we see in Table 4 that the lat-
ter method requires respectively about 40% and 60% in term of Iters and CPU with TOL = 10~® and TOL = 10~°, which are
approximately in accord with the theoretical analysis and heuristic arguments in [16]. Similar faster convergence rates with
TOL = 10°° are also observed for the CRS and CORS methods compared with the BiCR and BiCOR methods, respectively.
Moreover, with TOL = 107, the CRS and CORS methods require only about 25% of the Iters and CPU of the BiCR and BiCOR
methods. A notable finding with TOL = 107 is also observed for the faster convergence of the BiCORSTAB method in com-
parison with the BiCGSTAB method shown in the last two lines of Table 4. Still looking at this table, the BICOR method re-
quires the same Iters as the BiCR method but is a little faster in terms of CPU. Similar phenomena exist when comparing the
CORS method with the SCGS and CRS methods.

In order to find the reason why these methods perform dramatically differently with TOLs different only in one order, the
convergence histories of these methods were examined. We found that some of the compared methods such as the CRS,
CORS and BiCORSTAB methods stagnated for some time after the 2-norm of the updated residual achieved the accuracy
of TOL = 10~ while the others were still in certain oscillation. Since the main concern of this paper are smooth effects ob-
tained by the BiCOR method and its two variants compared with the CBiCG method and its two corresponding variants. Also
taking the better performances obtained by our concerned methods with TOL = 10~ into account, we choose TOL = 107> to
illustrate the convergence histories in Fig. 3. An investigation has been made for comparison of the CBiCG, BiCR and BiCOR
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methods by dividing the whole converging process into two stages as shown in the top right two plots of Fig. 3. Similar more
smooth convergence properties of the latter two methods can be discovered in comparison with the first one. As was ad-
dressed by van der Vorst in [48,62], in such cases, the CBiCG method loses orthogonality among the residuals in a very early
phase. Because of the superiority of the BiCR and BiCOR methods to the CBiCG method with respect to smooth convergence
behavior, the CRS and CORS methods converge much more smoothly and faster than the CGS method. So does the SCGS
method, but it is not as smooth as the CRS and CORS methods. See the middle left two plots in Fig. 3 for details.

Finally, observing the bottom leftmost plot of Fig. 3, in this case with TOL = 107>, the BICORSTAB method, apart from con-
verging much faster in term of Iters and CPU than the BICGSTAB method shown in Table 4, is also apparently more stable. It is

e




concluded here that the BICORSTAB method may be regarded as a rather efficient and more robust choice for such cases of
low accuracy. In addition, looking at Table 4 with TOL = 10> and the last two plots of Fig. 3, the BiCORSTAB method im-
proves the BiCOR method with respect to smooth and fast convergence behavior and the CORS method with respect to
smooth convergence behavior, as we might expect from the purpose of developing the BiCORSTAB method. In addition, with
TOL = 1073, this is a typical situation where the CORS method as well as the CRS method is much more efficient than the
BiCGSTAB method in terms of Iters and CPU while keeping similarly “asymptotical” convergence behaviors by observation
of Table 4 and the last plot of Fig. 3.

5.3. Example 3: HB/younglc

In the third example, the CBiCG method has small irregularities and does not converge superlinearly, as reflected in first
plot of Fig. 4. The BiCOR and BiCR methods seem to have almost the same “asymptotical” speed of convergence as the CBiCG
method while the BiCOR method seems a little smoother than the other two. From the second plot in Fig. 4, the BICORSTAB
and BiCGSTAB methods also have similar convergence behaviors. As observed for the CGS method in Example 2, in this case,
the CGS, SCGS, CRS and CORS methods decreased far from monotonously, but fluctuated rather strongly and suffered a lot as
shown in the third plot of Fig. 4 and Table 5. As stated in [16], the residuals produced by the latter four methods made quite
large jumps in the “wrong” direction, which might lead to grievous cancellation, spoiling the solution delivered by the pro-
cess in terms of TRR in Table 5. For related discussions on this effect and its consequences, see also [26,48,62]. At this point, it
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is necessary to develop an algorithm to escape from this problem. This can give a necessary support for the development of
the BiCGSTAB and BiCORSTAB methods.

Looking again at the second plot in Fig. 4, although the BiCGSTAB and BiCORSTAB methods converge a little more
smoothly than the CBiCG and BiCOR methods, they do not improve the efficiency in terms of Iters and CPU shown in
Table 5. We exploited the spectrum of the coefficient matrix as presented in the last plot of Fig. 4. A possible explanation
is given by Simoncini and Szyld [7] for when the BICGSTAB method is not very effective. That is when the spectrum has large
imaginary components. So observing the last plot of Fig. 4, it may also give some reason why the BiCORSTAB method does
not perform better than the BiCOR method in this case. In such cases, we may fall in favor of the BiCGSTAB(I) method by
Sleijpen and Fokkema [58]. As Sleijpen suggested, the BiCGSTAB(I) solver may capture those eigenvalues more effectively
to show good performance. Therefore, it may be instructive to later pursue the research direction to select other values
for the pivotal parameters w;_; in line 21 of Algorithm 5 to improve the BICORSTAB method.

5.4. Example 4: Bindel/ted_AB_unscaled

It is a strange but interesting example for our present methods to respectively perform much more smoothly than the
CBiCG method and its two variants, as reflected in Fig. 5. It seemed that all the first seven methods listed in Table 6 were
terminated by satisfying the stopping criteria with TOL = 10° in terms of TRR. In fact, the solutions obtained by these meth-
ods deviated far from the desired solution after a complete investigation. They all deteriorated seriously in components after
about 4200. So the word “fake” is used here to characterize this amazing phenomenon, which is fun to study further.

By the end of this section, we would like to make some further comparisons. The GMRES variant, as it is well known, be-
came the de facto standard for nonsymmetric linear systems [63]. Like all methods satisfying certain minimum residual con-
ditions on nested subspaces, the GMRES method can generate a non-increasing sequence of residual norms [7]. As stressed
by Simoncini and Szyld [7], most methods including the GMRES method reviewed there can be employed with no change in
case the linear system is complex, with the use of the standard Hermitian inner product. At the end of this section, some
comparative experiments between the BiCOR/CORS/BiCORSTAB family and the GMRES method without restarting are per-
formed. For details on the implementation of the GMRES method, refer to Saad [26]. Numerical results with the GMRES
method for the above four examples are listed in Table 7 and comparative convergence histories between the BiCOR/
CORS/BiCORSTAB family and the GMRES method are illustrated in Fig. 6. Carefully comparing the reports displayed in
Table 7 with those in Tables 2,4, 5 and 6 and looking at Fig. 6, the following observations and remarks can be made. For
Example 1, the GMRES method costs too much computational time while behaves a little more smoothly than the other
three. Both of smooth convergence behavior and efficiency in terms of Iters and CPU considered, the BiCOR/CORS/BiCORSTAB
family is advantageous and the CORS method is the best favourable in such cases. The CORS and BiCORSTAB methods have
about the same “asymptotical” speed of convergence as the GMRES method (if we ignore the local peaks in the former two
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Fig. 5. Fake convergence histories of Example 4 with TOL = 107°,
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have some appealing properties in smoothing effect according to the numerical experiments when solving complex nonsym-
metric linear systems. Besides smoother convergence behavior, sometimes they converged much faster than their counter-
parts related to the CBiCG method as well as the BiCR method in [47]. But the obtained dramatically smoothing convergence
behavior is harder to analyze theoretically. Moreover, one is often faced with a quite irregular convergence behavior in many
practical situations, as partly illustrated in the numerical experiments.

In addtion, it should be kept in mind that smoothing the residual does not often improve the numerical properties of the
primary methods [7,34]. As observed in Tables 2-6, the methods with smoothing effects do not provide a much more accu-
rate final solution than the non-smoothed methods in terms of TRR. In fact, what really counts in practice is that a method
finds a solution (with a certain stopping criteria) as quickly as possible. The smoothness of the convergence does not always
matter from that point of view; see [64].

Nevertheless, what is amazing is that under certain conditions, our present methods may be competitive to the CBiCG
method and its two variants as well as Sogabe’s methods [46,47] in both aspects of smooth effect and efficiency.

The proposed Lanczos-type variants combined with preconditioning techniques to deal with large electromagnetic prob-
lems will be the subject of another future research.
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